
Open|SpeedShop Quick Start Guide n CONVENIENCE SCRIPT DESCRIPTION
n osscompare: Compare Database Files
Running a convenience script with no arguments lists the accepted arguments. For the hwc scripts the accepted
PAPI counters available are listed.
osscompare “<db_file1>, < db_file2>[,<db_file>…]” [time | percent | <other metrics>] [rows=nn]
[viewtype=functions|statements|linkedobjects]>[oname=<csv filename>]
Example: osscompare “smg-run1.openss,smg-run2.openss”
Additional arguments for comparison metric:
Produces side-by-side comparison. Type “man osscompare” for more details.

n cbtfsummary: Summary/Overview Experiment
cbtfsummary “<command> < args>”
Sequential job example:
cbtfsummary “smg2000 –n 50 50 50”
Parallel job example:
cbtfsummary “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments: None at this time.

n osspcsamp: Program Counter Experiment
osspcsamp “<command> < args>” [high | low | default | <sampling rate>]
Sequential job example:
osspcsamp “smg2000 –n 50 50 50”
Parallel job example:
osspcsamp “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
high: twice the default sampling rate (samples per second) low: half the default sampling rate
default: default sampling rate is 100 <sampling rate>: integer value sampling rate

n ossusertime: Call Path Experiment
ossusertime “<command> < args>” [high | low | default | <sampling rate>]
Sequential job example:
ossusertime “smg2000 –n 50 50 50”
Parallel job example:
ossusertime “mpirun –np 64 smg2000 –n 50 50 50”
Additional arguments:
high: twice the default sampling rate (samples per second) low: half the default sampling rate
default: default sampling rate is 35
<sampling rate>: integer value sampling rate

n osshwc, osshwctime: HWC Experiments
osshwc[time] “<command> < args>” [default | <PAPI_event> | <PAPI threshold> | <PAPI_event>
<PAPI threshold>]
Sequential job example:
osshwc[time] “smg2000 –n 50 50 50”
Parallel job example:
osshwc[time] “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: event (PAPI_TOT_CYC), threshold (10000)
<PAPI_event>: PAPI event name
<PAPI threshold>: PAPI integer threshold

n osshwcsamp: HWC Experiment
osshwcsamp “<command>< args>” [default |<PAPI_event_list>|<sampling_rate>]
Sequential job example: osshwcsamp “smg2000”
Parallel job example:
osshwcsamp “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: events(PAPI_TOT_CYC and PAPI_TOT_INS), sampling_rate is 100
<PAPI_event_list>: Comma separated PAPI event list
<sampling_rate>: Integer value sampling rate

n ossio, ossiop, ossiot: I/O Experiments
ossio[[p]�|[t]] “<command> < args>” [default | f_t_list]
Sequential job example:
ossio[[p]|[t]] “bonnie++”
Parallel job example:
ossio[[p]|[t]] “mpirun –np 128 IOR”
Additional arguments:
default: trace all I/O functions
< f_t_list>: Comma-separated list of I/O functions to trace, one or more of the following: close, creat,
creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread, pread64, pwrite, pwrite64, read,
readv, write, and writev

Open|SpeedShop (O|SS) is an open source multi-platform performance tool enabling performance analysis of HPC
applications running on both single node and large scale Intel, AMD, ARM, Power, GPU processor based systems,
including Cray and IBM platforms. O|SS gathers and displays several types of information to aid in solving
performance problems, including: a high-level summary of performance, program counter sampling for a
lightweight flat profile to pinpoint where the slowdowns occurred, call path profiling to add caller/callee context
and locate critical time consuming paths, access to the machine hardware counter information, input/output tracing
for finding I/O performance problems, MPI function call tracing for MPI load imbalance detection, memory analysis,
POSIX thread tracing, NVIDIA CUDA tracing and OpenMP analysis. O|SS offers a command-line interface (CLI), a
graphical user interface (GUI) and a python scripting API user interface.

 n ACCESS INFORMATION
The O|SS Website: https://www.openspeedshop.org
O|SS Documentation, including the O|SS Users Guide: https://www.openspeedshop.org/documentation
CBTF Information: https://github.com/OpenSpeedShop/cbtf/wiki
Downloads for legacy installation: https://www.openspeedshop.org/downloads
New installation method uses the spack package manager: https://github/spack/spack

To use O|SS, check with your system administrator to see if a module, dotkit, or softenv file for O|SS exists on your
system. O|SS can be installed in user directories as no root access is needed. Visit the O|SS website and click on
Documentation under NAVIGATION to find the install instructions.

Help email: oss-contact@openspeedshop.org
To register for access to forum questions and answers: oss-questions@openspeedshop.org

 n WHAT OPEN|SPEEDSHOP PRODUCES
O|SS monitors a running application from start to finish and gathers performance data (and symbolic information
describing the application), saves it to a SQLite database file and generates a report. The symbolic information
allows the performance data to be viewed on another system without needing the application to be present.

 n PERFORMANCE INFORMATION TYPES
O|SS provides the following options, called experiments, to do specific analyses.

Experiment	 Description
summary		 Creates comma separated list (csv) files containing application level overview performance
			 information on MPI, OpenMP, I/O, memory usage, and hardware performance counters.

pcsamp		 Periodic sampling the program counters gives a low-overhead view of where the time is being 	
			 spent in the user application.

usertime		 Periodic sampling the call path allows the user to view inclusive and exclusive time spent in 		
			 application routines. It also allows the user to see which routines called which routines. Several 	
			 views are available, including the “hot” path and butterfly view.

hwc		 Hardware events (including clock cycles, graduated instructions, i- and d-cache and TLB misses, 	
			 floating-point operations) are counted at the machine instruction, source line and function 		
			 levels.

hwcsamp		 Similar to hwc, except that sampling is based on time, not PAPI event overflows. Also, up to six 	
			 events may be sampled during the same experiment.

hwctime		 Similar to hwc, except that call path sampling is also included.

io		 Accumulated wall-clock durations of I/O system calls: read, readv, write, writev, open, close, 	
			 dup, pipe, creat and others.

iop		 Same functions as io are profiled in a light weight manner. Less overhead than io, iot.

iot		 Similar to io, except that per event information is gathered, such as bytes moved, file names, etc.

mem**		 Tracks potential memory allocation call that is not later destroyed (leak). Records any memory 	
			 allocation event that set a new high-water of allocated memory current thread or process.
 		 Creates an event for each unique call path to a traced memory call and records the total number 	
			 of times this call path was followed, the max allocation size, the min allocation size, and the 	
			 total allocation, the total time spent in the call path, and the start time for the first call.

mpi		 Captures the time spent in and the number of times each MPI function is called.

mpip		 Same functions as mpi are profiled in a light weight manner. Less overhead than mpi, mpit.

mpit		 Like MPI but also records each MPI function call event with specific data for display using a GUI 	
			 or a command line interface (CLI).

pthreads		 Reports POSIX thread related performance information.

omptp		 Report task idle, barrier, and barrier wait times per OpenMP thread and attribute those times
			 to the OpenMP parallel regions.

cuda*		 Periodically samples both CPU and GPU hardware performance counter events. Traces all NVIDIA 	
			 CUDA kernel executions and the data transfers between main memory and the GPU. Records the 	
			 call sites, time spent, and data transfer sizes.

* CBTF mode only, not available when using the offline mode. See MODES OF OPERATION section.
** The memory experiment performance data is not reduced in the manner that it is in the default mode of operation
because the filters are not called during offline mode of operation.

 n MODES OF OPERATION
The default version of O|SS uses a multicast reduction network to transport the raw performance information from
the application to the O|SS client tool. This mode of operation uses the Component Based Tool Framework (CBTF)
infrastructure for better scalability and is known as the CBTF mode of operation.

The alternative mode of operation is the offline mode, traditionally referred to as the offline version. In this mode,
the raw performance information is written to files on a shared file system and then processed at applications
completion. To access this mode of operation use the “--offline” phrase after the convenience script name. For
example: osspcsamp --offline “how you run your application normally”. In general, this mode of operation can be
used when high numbers of processes, threads, or ranks are not required.

 n SUGGESTED WORKFLOW
We recommend an O|SS workflow consisting of two phases. First, gathering the performance data using the
convenience scripts. Then using the GUI or CLI to view the data.

 n CONVENIENCE SCRIPTS
Users are encouraged to use the convenience scripts (for dynamically linked applications) that hide some of the
underlying options for running experiments. The full command syntax can be found in the User’s Guide. The script
names correspond to the experiment types and are: osspcsamp, ossusertime, osshwc, osshwcsamp,
osshwctime, ossio, ossiot, ossmpi, ossmpit, ossiop, ossmem, ossomptp, osspthreads, ossmpip, and
osscuda plus an osscompare script. Note: If using the file I/O (offline) version, make sure to set
OPENSS_RAWDATA_DIR (See KEY ENVIRONMENT VARIABLES section for info).

When running Open|SpeedShop, use the same syntax that is used to run the application/executable outside of O|SS,
but enclosed in quotes; e.g., Using MPI drivers like mpirun: osspcsamp “mpirun -np 512 ./smg2000 -n 5 5 5”
Using SLURM/srun: osspcsamp “srun -N 64 -n 512 ./smg2000 -n 5 5 5”
Redirection to/from files inside quotes can be problematic, see convenience script “man” pages for more info.

For the overview experiment, please use the cbtfsummary convenience script. Set the environment variable
CBTF_CSVDATA_DIR to the directory path for the (per thread of execution) created performance information csv files.

For gathering and displaying loop level information, use the convenience script option: --loops. For gathering and
displaying AVX15 information, use the option: --vinstr512. These features are optional as they require scanning the
application executable after the application completes its execution.

 n REPORT AND DATABASE CREATION
Running the pcsamp experiment on the sequential program named mexe: osspcsamp mexe
results in a default report and the creation of a SQLite database file mexe-pcsamp.openss in the current directory;
the report:

CPU Time		 % CPU Time	 Function
11.650 		 48.990			 f3 (mexe: m.c, 24)
 7.960		 33.478			 f2 (mexe: m.c,15)
 4.150		 17.451			 f1 (mexe: m.c,6)
 0.020		 0.084			 work(mexe:m.c,33)

To access alternative views in the existing Qt3 GUI: openss –f mexe-pcsamp.openss loads the database file. Then use
the GUI toolbar to select desired views; or, using the CLI: openss –cli –f mexe-pcsamp.openss to load the database
file. Then use the expview command options for desired views.

To access the new Qt4/Qt5 GUI: openss-gui -f mexe-pcsamp.openss loads the database file.

9/20/2018

n OPENSS_DB_DIR
Specifies the path to where O|SS will build the database file. On a file system without file locking enabled, the
SQLite component cannot create the database file. This variable is used to specify a path to a file system with locking
enabled for the database file creation. This usually occurs on lustre file systems that don’t have locking enabled.
OPENSS_DB_DIR=”file system path”
Example: export OPENSS_DB_DIR=/opt/filesys/userid

n OPENSS_ENABLE_MPI_PCONTROL
Activates the MPI_Pcontrol function recognition, otherwise MPI_Pcontrol function calls will be ignored by O|SS.
Gathering is disabled by default, until a MPI_Pcontrol(1) statement is executed.

n OPENSS_START_ENABLED
If OPENSS_ENABLE_MPI_PCONTROL is set, this environment variable tells O|SS to gather performance data from the
start of program execution.

n OPENSS_DEFER_VIEW
Allow overriding the displaying of the default view for cases where users may not want or need it to be displayed.

n CBTF_CSVDATA_DIR
Sets directory path for the location of where the cbtfsummary experiment csv files will be written.

 n INTERACTIVE COMMAND LINE USAGE
n Simple Usage to Create, Run, View Data
The CLI can be used to view experiment performance information. To invoke O|SS in interactive mode use:
openss –cli

n CLI Commands for Viewing Perfomance Data
These interactive CLI commands may be used to view the performance data in alternative ways once an experiment
has been run and the database file exists. The command: openss –cli –f <database-filename>
loads the performance experiment.

Then, the following commands may be used to view the performance information:
help or help commands : display CLI help text
expview : show the default view
expview –v statements : time-consuming statements
expview –v linkedobjects : time spent in libraries
expview –v calltrees,fullstack : all call paths
expview –m loadbalance : see load balance across ranks/threads/processes
expview –r <rank_num> : see data for specific rank(s)
expcompare –r 1 –r 2 –m time : compare rank 1 to rank 2 for metric equal time
list –v metrics : see optional performance data metrics
list –v src : see source files associated with experiment
list –v obj : see object files associated with experiment
list –v ranks : see ranks associated with experiment
list –v hosts : see machines associated with experiment
list –v savedviews : list the views that have been saved for immediate redisplay
expview –m <metric from above> : see metric specified
expview –v calltrees,fullstack <experiment type> <number> : see expensive call paths.
For example: expview –v calltrees,fullstack usertime2
shows the top two call paths in execution time.
expview <experiment-name><number> shows the top time-consuming functions. For example: expview
pcsamp2 : shows the two functions taking the most time.
expview –v statements <experiment-name><number> : shows the top time-consuming
statements. For example: expview –v statements pcsamp2 : shows the two statements taking the most time.

For more information about the Command Line Interface commands please consult the O|SS Users Guide:
https://www.openspeedshop.org/documentation

 n GRAPHICAL USER INTERFACE USAGE
The GUI can be used to run experiments or to view and/or compare previously created performance database files.
The two main commands used to invoke the GUI are:
Existing Qt3 GUI: openss –f database_file.openss : open a previously created file. These commonly used
commands are described in the sections below.
New Qt4/Qt5 GUI: openss-gui -f database_file.openss : open a previously created file. The new GUI is under
development, but available for evaluation.
The information in the remainder of this section applies only to the existing Qt3 GUI.

n GUI Source Panel
The Source Panel displays the source used in creating the program that was run during the O|SS experiment. The
source is annotated with performance information gathered while the experiment was run. Users can focus the
source panel to the point of the performance bottleneck by clicking on the performance information displayed in the
Statistics Panel. In order to see per statement statistics, build the application to be monitored with -g enabled.

n ossmem**: Memory Analysis Experiments
ossmem “<command><args>” [default | f_t_list]
Sequential job example: s
ossmem “smg2000 –n 50 50 50”
Parallel job example:
ossmem “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: trace all memory functions
< f_t_list>: Comma-separated list of memory functions to trace, one or more of the following: malloc,
free, memalign, posix_mem align, calloc and realloc

n osspthreads: POSIX Thread Analysis Experiments
osspthreads “<command><args>” [default | f_t_list]
Sequential job example:
osspthreads “smg2000 –n 50 50 50”
Parallel job example:
osspthreads “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: trace all POSIX thread functions
< f_t_list>: Comma-separated list of POSIX thread functions to trace, one or more of the following:
pthreads_create, pthreads_mutex_init, pthreads_mutex_destroy, pthreads_mutex_lock,
pthreads_mutex_trylock, pthreads_mutex_unlock, pthreads_cond_init, pthreads_cond_destroy,
pthreads_cond_signal, pthreads_cond_broadcast, pthreads_cond_wait,
and pthreads_cond_timedwait

n ossmpi, ossmpip, ossmpit: MPI Experiments
ossmpi[p][t] “<mpirun><mpiargs><command><args>” [default | f_t_list]
Parallel job example: ossmpi[p][t] “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments: default: trace all MPI functions
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero or more of:
MPI_Allgather, …. MPI_Waitsome and/or zero or more of the MPI group categories:

MPI Category				 Argument
All MPI Functions 				 all
Collective Communicators 			 collective_com
Persistent Communicators 			 persistent_com
Synchronous Point to Point 			 synchronous_p2p
Asynchronous Point to Point 		 asynchronous_p2p
Asynchronous Non-blocking		 async_nonblocking
Process Topologies 				 process_topologies
Groups Contexts Communicators 		 graphs_contexts_comms
Environment 				 environment
Datatypes 					 datatypes
File I/O 					 file_io

n osscuda*: NVIDIA CUDA Experiment
osscuda “<command> < args>”
Sequential job example: osscuda “eigenvalues --matrix-size=4096”
Parallel job example: osscuda “mpirun -np 64 -npernode 1 lmp_linux -sf gpu < in.lj”

n omptp: OpenMP Experiment
ossomptp “<command><args>”
Sequential job example: ossomptp “./lulesh2.0.3”
Parallel job example: ossomptp “mpirun -np 27 ./lulesh2.0.3”

* CBTF mode only, not available when using the offline mode. See MODES OF OPERATION section.
** The memory experiment performance data is not reduced in the manner that it is in the default mode of operation
because the filters are not called during offline mode of operation.

 n KEY ENVIRONMENT VARIABLES
n OPENSS_RAWDATA_DIR (offline mode only)
Used on cluster systems where a /tmp file system is unique on each node. It specifies the location of a shared file
system path which is required for O|SS to save the “raw” data files on distributed systems.
OPENSS_RAWDATA_DIR=”shared file system path”
Example: export OPENSS_RAWDATA_DIR=/lustre4/fsys/userid

n OPENSS_MPI_IMPLEMENTATION
Specifies the MPI implementation in use by the application; only needed for the mpi, mpip, and mpiotf experiments.
These are the currently supported MPI implementations: openmpi, mpich, mpich2, mpt, mvapich, mvapich2.
For Cray, IBM, Intel MPI implementations, use mpich. For SGI MPT MPI implementation, use mpt.
OPENSS_MPI_IMPLEMENTATION=”MPI implementation. name”
Example: export OPENSS_MPI_IMPLEMENTATION=openmpi
In most cases, O|SS can auto-detect the MPI in use.

n GUI Statistics Panel
The GUI can also be used to directly view performance data from a previous experiment by opening its database file.
For example: openss –f smg2000.pcsamp.openss

The GUI Statistics Panel view relates the performance data to the corresponding application source code. Clicking on
an entry in the performance data panel focuses the source panel on the function or statement corresponding to the
performance item.

The Statistics Panel toolbar icons allow alternative views of the performance data, and also built-in analysis views,
e.g., load balance and outlier detection using cluster analysis. To aid in the selection of alternative views, a toolbar
with icons corresponding to the views is provided. The icons are colored coded: where light blue icons relate to
information about the experiment, purple for general display options, green for optional view types, and dark blue
for analysis view options.

I: Information	 Show the metadata information such as the experiment type, processes, ranks, threads, hosts 	
			 and other info.

U: Update		 Update the display with performance information from the database file.

CL: Clear Auxiliary	 If the user has chosen to view a time segment, a specific rank/process/thread, or a specific		
Information		 function’s data, then when the CL icon is selected, it will clear those settings so that the next 	
			 view is reset to show data with the original, initial settings.

D: Default 		 Show default performance results. First use View and Display Choice buttons to select whether 	
			 data corresponds to functions, statements, or linked objects; then click D-icon.
S, down arrow: 	 Show performance results for the source statements for the selected function. 	
Statement results	 Highlight a function before clicking this icon.
per Function

C+: Call Path 	 Show all call paths, including duplicates, in their entirety.
Full Stacks

C+, down arrow: 	 Show all call paths for the selected function only. Highlight a function before clicking this 	
Call Path Full	 icon. All call paths will be shown in their entirety.
Stacks Per Function

HC: Hot Call Path 	 Show the call path in the application that took the most time.

B: Butterfly View 	 Show a butterfly view: the callers and callees of the selected function. Highlight a function 		
			 before clicking this icon.

TS: Time Segment 	 Show a portion of the performance data results in a selected time segment.
Selection

OV: Optional View 	 Select which performance metrics to show in the new performance data report.
Selection

LB: Load Balance 	 Show the load balance view: min, max and average performance values. Only used with	
View		 threaded or multi-process applications.

CA: Comparative 	 Show the result of a cluster analysis algorithm run against the threaded or multi-process	
Analysis View	 performance analysis results. The purpose is to find outlying threads or processes and report		
			 groups of like performing threads, processes or ranks.

CC: Custom 		 Allow the user to create custom views of performance analysis results.
Comparison View

n GUI Manage Processes Panel
The Manage Processes panel allows focusing on a specific rank, process, or thread or to create process groups and
view a group’s corresponding data.

n GUI General Panel Info
Each view has a set of panel manipulation icons to split the panel vertically or horizontally or remove the panel from
the GUI. The icon toolbar found on far right of GUI panels is shown below.

 n CONDITIONAL DATA GATHERING
Gather performance data for code sections by bracketing your code with MPI_Pcontrol calls. MPI_Pcontrol (1)
enables gathering. MPI_Pcontrol (0) disables. OPENSS_ENABLE_MPI_PCONTROL must be set to activate the
feature. Set OPENSS_START_ENABLED, if gathering from the start of the program is desired.

https://www.openspeedshop.org/documentation

